If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+2x-14=0
a = 3; b = 2; c = -14;
Δ = b2-4ac
Δ = 22-4·3·(-14)
Δ = 172
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{172}=\sqrt{4*43}=\sqrt{4}*\sqrt{43}=2\sqrt{43}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{43}}{2*3}=\frac{-2-2\sqrt{43}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{43}}{2*3}=\frac{-2+2\sqrt{43}}{6} $
| 12x=5000000 | | 4x*3x=5000000 | | 4x+3x=5000000 | | 5k2=180 | | x=2x=6 | | (4+n)5=10(n+5) | | 4(g-7)=24 | | -6x+4=2x+12 | | 3-n=59 | | (2x-21)+x=180 | | (x+1)(x+12)=(x+5)(x+4) | | 6x+4=2x=24 | | x-27=8+10=45 | | 5x−3=42 | | (10x+7)=40+(7x+1) | | 4c=45-5c | | 48-5b=7b | | 7b+2=2b-33 | | 3(p+3)+2p=10,8 | | 2a-1=20-a | | 9c-2=6c+25 | | 7b+5=17+3b | | 6a+3=13+a | | 45+3f=66 | | 3(p+3)+2p=14,4 | | 3(p+3)+2p=63 | | 12x^2+2x-69=0 | | (2x-12)=x+42 | | 3x^2+0.5x-0.5=0 | | 12+3/5x-3=29 | | 16k+10k-3=37 | | 16k-10k=-37 |